處理遺失資料#
被視為「遺失」的值#
pandas 使用不同的哨兵值來表示遺失(也稱為 NA),具體取決於資料類型。
numpy.nan
適用於 NumPy 資料類型。使用 NumPy 資料類型的缺點是原始資料類型會強制轉換為 np.float64
或 object
。
In [1]: pd.Series([1, 2], dtype=np.int64).reindex([0, 1, 2])
Out[1]:
0 1.0
1 2.0
2 NaN
dtype: float64
In [2]: pd.Series([True, False], dtype=np.bool_).reindex([0, 1, 2])
Out[2]:
0 True
1 False
2 NaN
dtype: object
NaT
適用於 NumPy np.datetime64
、np.timedelta64
以及 PeriodDtype
。對於輸入應用程式,請使用 api.types.NaTType
。
In [3]: pd.Series([1, 2], dtype=np.dtype("timedelta64[ns]")).reindex([0, 1, 2])
Out[3]:
0 0 days 00:00:00.000000001
1 0 days 00:00:00.000000002
2 NaT
dtype: timedelta64[ns]
In [4]: pd.Series([1, 2], dtype=np.dtype("datetime64[ns]")).reindex([0, 1, 2])
Out[4]:
0 1970-01-01 00:00:00.000000001
1 1970-01-01 00:00:00.000000002
2 NaT
dtype: datetime64[ns]
In [5]: pd.Series(["2020", "2020"], dtype=pd.PeriodDtype("D")).reindex([0, 1, 2])
Out[5]:
0 2020-01-01
1 2020-01-01
2 NaT
dtype: period[D]
NA
適用於 StringDtype
、Int64Dtype
(以及其他位元寬度)、Float64Dtype
(以及其他位元寬度)、:class:`BooleanDtype 以及 ArrowDtype
。這些類型會維護資料的原始資料類型。對於輸入應用程式,請使用 api.types.NAType
。
In [6]: pd.Series([1, 2], dtype="Int64").reindex([0, 1, 2])
Out[6]:
0 1
1 2
2 <NA>
dtype: Int64
In [7]: pd.Series([True, False], dtype="boolean[pyarrow]").reindex([0, 1, 2])
Out[7]:
0 True
1 False
2 <NA>
dtype: bool[pyarrow]
若要偵測這些遺失值,請使用 isna()
或 notna()
方法。
In [8]: ser = pd.Series([pd.Timestamp("2020-01-01"), pd.NaT])
In [9]: ser
Out[9]:
0 2020-01-01
1 NaT
dtype: datetime64[ns]
In [10]: pd.isna(ser)
Out[10]:
0 False
1 True
dtype: bool
注意
isna()
或 notna()
也會將 None
視為遺失值。
In [11]: ser = pd.Series([1, None], dtype=object)
In [12]: ser
Out[12]:
0 1
1 None
dtype: object
In [13]: pd.isna(ser)
Out[13]:
0 False
1 True
dtype: bool
警告
在 np.nan
、NaT
和 NA
之間的等式比較並不作用於 None
In [14]: None == None # noqa: E711
Out[14]: True
In [15]: np.nan == np.nan
Out[15]: False
In [16]: pd.NaT == pd.NaT
Out[16]: False
In [17]: pd.NA == pd.NA
Out[17]: <NA>
因此,DataFrame
或 Series
與這些遺失值之一之間的等式比較,並未提供與 isna()
或 notna()
相同的資訊。
In [18]: ser = pd.Series([True, None], dtype="boolean[pyarrow]")
In [19]: ser == pd.NA
Out[19]:
0 <NA>
1 <NA>
dtype: bool[pyarrow]
In [20]: pd.isna(ser)
Out[20]:
0 False
1 True
dtype: bool
NA
語意#
警告
實驗性:NA`
的行為仍可能在未警告的情況下改變。
從 pandas 1.0 開始,一個實驗性的 NA
值(單例)可用於表示純量遺失值。 NA
的目標是提供一個「遺失」指標,可在所有資料類型中一致使用(而不是 np.nan
、None
或 pd.NaT
,視資料類型而定)。
例如,當 Series
中有遺失值,且具有可為空整數資料類型時,它將使用 NA
。
In [21]: s = pd.Series([1, 2, None], dtype="Int64")
In [22]: s
Out[22]:
0 1
1 2
2 <NA>
dtype: Int64
In [23]: s[2]
Out[23]: <NA>
In [24]: s[2] is pd.NA
Out[24]: True
目前,pandas 尚未使用 NA
的資料類型,預設為 DataFrame
或 Series
,因此您需要明確指定資料類型。在 轉換區段 中說明了轉換為這些資料類型的簡單方法。
算術和比較運算中的傳播#
一般而言,在涉及 NA
的運算中,遺失值會傳播。當其中一個運算元未知時,運算結果也會未知。
例如,NA
會在算術運算中傳播,類似於 np.nan
In [25]: pd.NA + 1
Out[25]: <NA>
In [26]: "a" * pd.NA
Out[26]: <NA>
在某些特殊情況下,即使其中一個運算元為 NA
,結果也是已知的。
In [27]: pd.NA ** 0
Out[27]: 1
In [28]: 1 ** pd.NA
Out[28]: 1
在等式和比較運算中,NA
也會傳播。這與 np.nan
的行為不同,其中與 np.nan
的比較總是傳回 False
。
In [29]: pd.NA == 1
Out[29]: <NA>
In [30]: pd.NA == pd.NA
Out[30]: <NA>
In [31]: pd.NA < 2.5
Out[31]: <NA>
In [32]: pd.isna(pd.NA)
Out[32]: True
注意
此基本傳播規則的例外情況是簡約(例如平均值或最小值),其中 pandas 預設會略過遺失值。請參閱 計算部分 以取得更多資訊。
邏輯運算#
對於邏輯運算,NA
遵循 三值邏輯(或稱為 Kleene 邏輯,類似於 R、SQL 和 Julia)的規則。此邏輯表示僅在邏輯上需要時才傳遞遺失值。
例如,對於邏輯「或」運算 (|
),如果其中一個運算元為 True
,我們已經知道結果將為 True
,而與另一個值無關(因此遺失值將為 True
或 False
)。在這種情況下,NA
不會傳遞
In [33]: True | False
Out[33]: True
In [34]: True | pd.NA
Out[34]: True
In [35]: pd.NA | True
Out[35]: True
另一方面,如果其中一個運算元為 False
,則結果取決於另一個運算元的值。因此,在這種情況下,NA
會傳遞
In [36]: False | True
Out[36]: True
In [37]: False | False
Out[37]: False
In [38]: False | pd.NA
Out[38]: <NA>
邏輯「與」運算 (&
) 的行為可以使用類似的邏輯來推導(其中現在 NA
如果其中一個運算元已經是 False
),則不會傳播)
In [39]: False & True
Out[39]: False
In [40]: False & False
Out[40]: False
In [41]: False & pd.NA
Out[41]: False
In [42]: True & True
Out[42]: True
In [43]: True & False
Out[43]: False
In [44]: True & pd.NA
Out[44]: <NA>
NA
在布林文中#
由於 NA 的實際值未知,因此將 NA 轉換為布林值是模稜兩可的。
In [45]: bool(pd.NA)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[45], line 1
----> 1 bool(pd.NA)
File missing.pyx:392, in pandas._libs.missing.NAType.__bool__()
TypeError: boolean value of NA is ambiguous
這也表示 NA
無法用於評估為布林值的情境中,例如 if condition: ...
,其中 condition
可能會是 NA
。在這種情況下,可以使用 isna()
來檢查 NA
或避免 condition
為 NA
,例如事先填入遺失值。
在 if
陳述式中使用 Series
或 DataFrame
物件時,會發生類似的情況,請參閱 在 pandas 中使用 if/真值陳述式。
NumPy ufuncs#
pandas.NA
實作 NumPy 的 __array_ufunc__
協定。大多數 ufunc 都適用於 NA
,且通常會傳回 NA
In [46]: np.log(pd.NA)
Out[46]: <NA>
In [47]: np.add(pd.NA, 1)
Out[47]: <NA>
警告
目前,包含 ndarray 和 NA
的 ufunc 會傳回填滿 NA 值的物件資料型別。
In [48]: a = np.array([1, 2, 3])
In [49]: np.greater(a, pd.NA)
Out[49]: array([<NA>, <NA>, <NA>], dtype=object)
此處的傳回類型未來可能會變更為傳回不同的陣列類型。
請參閱 DataFrame 與 NumPy 函數的互通性 以進一步瞭解 ufunc。
轉換#
如果您有 DataFrame
或 Series
使用 np.nan
,Series.convert_dtypes()
和 DataFrame.convert_dtypes()
在 DataFrame
中,它可以將資料轉換為使用資料類型的 NA
,例如 Int64Dtype
或 ArrowDtype
。這在從資料類型推斷的 IO 方法中讀取資料集後特別有幫助。
在此範例中,雖然所有欄位的資料類型都已變更,但我們顯示前 10 個欄位的結果。
In [50]: import io
In [51]: data = io.StringIO("a,b\n,True\n2,")
In [52]: df = pd.read_csv(data)
In [53]: df.dtypes
Out[53]:
a float64
b object
dtype: object
In [54]: df_conv = df.convert_dtypes()
In [55]: df_conv
Out[55]:
a b
0 <NA> True
1 2 <NA>
In [56]: df_conv.dtypes
Out[56]:
a Int64
b boolean
dtype: object
插入遺失資料#
您可以透過指定 Series
或 DataFrame
來插入遺失值。將根據資料類型選擇使用的遺失值哨兵。
In [57]: ser = pd.Series([1., 2., 3.])
In [58]: ser.loc[0] = None
In [59]: ser
Out[59]:
0 NaN
1 2.0
2 3.0
dtype: float64
In [60]: ser = pd.Series([pd.Timestamp("2021"), pd.Timestamp("2021")])
In [61]: ser.iloc[0] = np.nan
In [62]: ser
Out[62]:
0 NaT
1 2021-01-01
dtype: datetime64[ns]
In [63]: ser = pd.Series([True, False], dtype="boolean[pyarrow]")
In [64]: ser.iloc[0] = None
In [65]: ser
Out[65]:
0 <NA>
1 False
dtype: bool[pyarrow]
對於 object
類型,pandas 會使用給定的值
In [66]: s = pd.Series(["a", "b", "c"], dtype=object)
In [67]: s.loc[0] = None
In [68]: s.loc[1] = np.nan
In [69]: s
Out[69]:
0 None
1 NaN
2 c
dtype: object
遺失資料的計算#
遺失值會透過 pandas 物件之間的算術運算傳播。
In [70]: ser1 = pd.Series([np.nan, np.nan, 2, 3])
In [71]: ser2 = pd.Series([np.nan, 1, np.nan, 4])
In [72]: ser1
Out[72]:
0 NaN
1 NaN
2 2.0
3 3.0
dtype: float64
In [73]: ser2
Out[73]:
0 NaN
1 1.0
2 NaN
3 4.0
dtype: float64
In [74]: ser1 + ser2
Out[74]:
0 NaN
1 NaN
2 NaN
3 7.0
dtype: float64
在 資料結構概觀 中討論的描述性統計和計算方法(並在 這裡 和 這裡 列出)都說明了遺失資料。
在對資料求和時,NA 值或空資料將視為零。
In [75]: pd.Series([np.nan]).sum()
Out[75]: 0.0
In [76]: pd.Series([], dtype="float64").sum()
Out[76]: 0.0
在取乘積時,NA 值或空資料將視為 1。
In [77]: pd.Series([np.nan]).prod()
Out[77]: 1.0
In [78]: pd.Series([], dtype="float64").prod()
Out[78]: 1.0
預設情況下,cumsum()
和 cumprod()
等累積方法會忽略 NA 值,並將其保留在結果中。此行為可以使用 skipna
進行變更
In [79]: ser = pd.Series([1, np.nan, 3, np.nan])
In [80]: ser
Out[80]:
0 1.0
1 NaN
2 3.0
3 NaN
dtype: float64
In [81]: ser.cumsum()
Out[81]:
0 1.0
1 NaN
2 4.0
3 NaN
dtype: float64
In [82]: ser.cumsum(skipna=False)
Out[82]:
0 1.0
1 NaN
2 NaN
3 NaN
dtype: float64
刪除遺失資料#
dropna()
刪除有遺失資料的列或欄。
In [83]: df = pd.DataFrame([[np.nan, 1, 2], [1, 2, np.nan], [1, 2, 3]])
In [84]: df
Out[84]:
0 1 2
0 NaN 1 2.0
1 1.0 2 NaN
2 1.0 2 3.0
In [85]: df.dropna()
Out[85]:
0 1 2
2 1.0 2 3.0
In [86]: df.dropna(axis=1)
Out[86]:
1
0 1
1 2
2 2
In [87]: ser = pd.Series([1, pd.NA], dtype="int64[pyarrow]")
In [88]: ser.dropna()
Out[88]:
0 1
dtype: int64[pyarrow]
填補遺失資料#
依值填補#
fillna()
以非 NA 資料取代 NA 值。
以純量值取代 NA
In [89]: data = {"np": [1.0, np.nan, np.nan, 2], "arrow": pd.array([1.0, pd.NA, pd.NA, 2], dtype="float64[pyarrow]")}
In [90]: df = pd.DataFrame(data)
In [91]: df
Out[91]:
np arrow
0 1.0 1.0
1 NaN <NA>
2 NaN <NA>
3 2.0 2.0
In [92]: df.fillna(0)
Out[92]:
np arrow
0 1.0 1.0
1 0.0 0.0
2 0.0 0.0
3 2.0 2.0
向前或向後填補間隙
In [93]: df.ffill()
Out[93]:
np arrow
0 1.0 1.0
1 1.0 1.0
2 1.0 1.0
3 2.0 2.0
In [94]: df.bfill()
Out[94]:
np arrow
0 1.0 1.0
1 2.0 2.0
2 2.0 2.0
3 2.0 2.0
限制填補的 NA 值數量
In [95]: df.ffill(limit=1)
Out[95]:
np arrow
0 1.0 1.0
1 1.0 1.0
2 NaN <NA>
3 2.0 2.0
NA 值可以用 Series
或 DataFrame
中對應的值取代,其中索引和欄位與原始物件和填入物件對齊。
In [96]: dff = pd.DataFrame(np.arange(30, dtype=np.float64).reshape(10, 3), columns=list("ABC"))
In [97]: dff.iloc[3:5, 0] = np.nan
In [98]: dff.iloc[4:6, 1] = np.nan
In [99]: dff.iloc[5:8, 2] = np.nan
In [100]: dff
Out[100]:
A B C
0 0.0 1.0 2.0
1 3.0 4.0 5.0
2 6.0 7.0 8.0
3 NaN 10.0 11.0
4 NaN NaN 14.0
5 15.0 NaN NaN
6 18.0 19.0 NaN
7 21.0 22.0 NaN
8 24.0 25.0 26.0
9 27.0 28.0 29.0
In [101]: dff.fillna(dff.mean())
Out[101]:
A B C
0 0.00 1.0 2.000000
1 3.00 4.0 5.000000
2 6.00 7.0 8.000000
3 14.25 10.0 11.000000
4 14.25 14.5 14.000000
5 15.00 14.5 13.571429
6 18.00 19.0 13.571429
7 21.00 22.0 13.571429
8 24.00 25.0 26.000000
9 27.00 28.0 29.000000
注意
DataFrame.where()
也可用來填入 NA 值。結果與上述相同。
In [102]: dff.where(pd.notna(dff), dff.mean(), axis="columns")
Out[102]:
A B C
0 0.00 1.0 2.000000
1 3.00 4.0 5.000000
2 6.00 7.0 8.000000
3 14.25 10.0 11.000000
4 14.25 14.5 14.000000
5 15.00 14.5 13.571429
6 18.00 19.0 13.571429
7 21.00 22.0 13.571429
8 24.00 25.0 26.000000
9 27.00 28.0 29.000000
內插#
DataFrame.interpolate()
和 Series.interpolate()
使用各種內插方法填入 NA 值。
In [103]: df = pd.DataFrame(
.....: {
.....: "A": [1, 2.1, np.nan, 4.7, 5.6, 6.8],
.....: "B": [0.25, np.nan, np.nan, 4, 12.2, 14.4],
.....: }
.....: )
.....:
In [104]: df
Out[104]:
A B
0 1.0 0.25
1 2.1 NaN
2 NaN NaN
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40
In [105]: df.interpolate()
Out[105]:
A B
0 1.0 0.25
1 2.1 1.50
2 3.4 2.75
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40
In [106]: idx = pd.date_range("2020-01-01", periods=10, freq="D")
In [107]: data = np.random.default_rng(2).integers(0, 10, 10).astype(np.float64)
In [108]: ts = pd.Series(data, index=idx)
In [109]: ts.iloc[[1, 2, 5, 6, 9]] = np.nan
In [110]: ts
Out[110]:
2020-01-01 8.0
2020-01-02 NaN
2020-01-03 NaN
2020-01-04 2.0
2020-01-05 4.0
2020-01-06 NaN
2020-01-07 NaN
2020-01-08 0.0
2020-01-09 3.0
2020-01-10 NaN
Freq: D, dtype: float64
In [111]: ts.plot()
Out[111]: <Axes: >

In [112]: ts.interpolate()
Out[112]:
2020-01-01 8.000000
2020-01-02 6.000000
2020-01-03 4.000000
2020-01-04 2.000000
2020-01-05 4.000000
2020-01-06 2.666667
2020-01-07 1.333333
2020-01-08 0.000000
2020-01-09 3.000000
2020-01-10 3.000000
Freq: D, dtype: float64
In [113]: ts.interpolate().plot()
Out[113]: <Axes: >

相對於 Timestamp
在 DatetimeIndex
中的內插,可透過設定 method="time"
In [114]: ts2 = ts.iloc[[0, 1, 3, 7, 9]]
In [115]: ts2
Out[115]:
2020-01-01 8.0
2020-01-02 NaN
2020-01-04 2.0
2020-01-08 0.0
2020-01-10 NaN
dtype: float64
In [116]: ts2.interpolate()
Out[116]:
2020-01-01 8.0
2020-01-02 5.0
2020-01-04 2.0
2020-01-08 0.0
2020-01-10 0.0
dtype: float64
In [117]: ts2.interpolate(method="time")
Out[117]:
2020-01-01 8.0
2020-01-02 6.0
2020-01-04 2.0
2020-01-08 0.0
2020-01-10 0.0
dtype: float64
對於浮點數索引,請使用 method='values'
In [118]: idx = [0.0, 1.0, 10.0]
In [119]: ser = pd.Series([0.0, np.nan, 10.0], idx)
In [120]: ser
Out[120]:
0.0 0.0
1.0 NaN
10.0 10.0
dtype: float64
In [121]: ser.interpolate()
Out[121]:
0.0 0.0
1.0 5.0
10.0 10.0
dtype: float64
In [122]: ser.interpolate(method="values")
Out[122]:
0.0 0.0
1.0 1.0
10.0 10.0
dtype: float64
如果您已安裝 scipy,您可以傳遞 1-d 內插常式的名稱給 method
。如 scipy 內插 文件 和參考 指南 中所指定。適當的內插方法會根據資料類型而定。
提示
如果您處理的是以越來越快的速度增長的時序,請使用 method='barycentric'
。
如果您有近似累積分配函數的值,請使用 method='pchip'
。
若要填入遺失值以達到平滑繪製圖表的目的,請使用 method='akima'
。
In [123]: df = pd.DataFrame(
.....: {
.....: "A": [1, 2.1, np.nan, 4.7, 5.6, 6.8],
.....: "B": [0.25, np.nan, np.nan, 4, 12.2, 14.4],
.....: }
.....: )
.....:
In [124]: df
Out[124]:
A B
0 1.0 0.25
1 2.1 NaN
2 NaN NaN
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40
In [125]: df.interpolate(method="barycentric")
Out[125]:
A B
0 1.00 0.250
1 2.10 -7.660
2 3.53 -4.515
3 4.70 4.000
4 5.60 12.200
5 6.80 14.400
In [126]: df.interpolate(method="pchip")
Out[126]:
A B
0 1.00000 0.250000
1 2.10000 0.672808
2 3.43454 1.928950
3 4.70000 4.000000
4 5.60000 12.200000
5 6.80000 14.400000
In [127]: df.interpolate(method="akima")
Out[127]:
A B
0 1.000000 0.250000
1 2.100000 -0.873316
2 3.406667 0.320034
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000
透過多項式或樣條近似進行內插時,您還必須指定近似的次數或階數
In [128]: df.interpolate(method="spline", order=2)
Out[128]:
A B
0 1.000000 0.250000
1 2.100000 -0.428598
2 3.404545 1.206900
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000
In [129]: df.interpolate(method="polynomial", order=2)
Out[129]:
A B
0 1.000000 0.250000
1 2.100000 -2.703846
2 3.451351 -1.453846
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000
比較多種方法。
In [130]: np.random.seed(2)
In [131]: ser = pd.Series(np.arange(1, 10.1, 0.25) ** 2 + np.random.randn(37))
In [132]: missing = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29])
In [133]: ser.iloc[missing] = np.nan
In [134]: methods = ["linear", "quadratic", "cubic"]
In [135]: df = pd.DataFrame({m: ser.interpolate(method=m) for m in methods})
In [136]: df.plot()
Out[136]: <Axes: >

使用 Series.reindex()
從擴充資料內插新的觀察值。
In [137]: ser = pd.Series(np.sort(np.random.uniform(size=100)))
# interpolate at new_index
In [138]: new_index = ser.index.union(pd.Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]))
In [139]: interp_s = ser.reindex(new_index).interpolate(method="pchip")
In [140]: interp_s.loc[49:51]
Out[140]:
49.00 0.471410
49.25 0.476841
49.50 0.481780
49.75 0.485998
50.00 0.489266
50.25 0.491814
50.50 0.493995
50.75 0.495763
51.00 0.497074
dtype: float64
內插限制#
interpolate()
接受 limit
關鍵字參數,以限制自上次有效觀察以來填入的連續 NaN
值數量
In [141]: ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13, np.nan, np.nan])
In [142]: ser
Out[142]:
0 NaN
1 NaN
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 NaN
8 NaN
dtype: float64
In [143]: ser.interpolate()
Out[143]:
0 NaN
1 NaN
2 5.0
3 7.0
4 9.0
5 11.0
6 13.0
7 13.0
8 13.0
dtype: float64
In [144]: ser.interpolate(limit=1)
Out[144]:
0 NaN
1 NaN
2 5.0
3 7.0
4 NaN
5 NaN
6 13.0
7 13.0
8 NaN
dtype: float64
預設情況下,NaN
值會以 forward
方向填入。使用 limit_direction
參數以 backward
或 both
方向填入。
In [145]: ser.interpolate(limit=1, limit_direction="backward")
Out[145]:
0 NaN
1 5.0
2 5.0
3 NaN
4 NaN
5 11.0
6 13.0
7 NaN
8 NaN
dtype: float64
In [146]: ser.interpolate(limit=1, limit_direction="both")
Out[146]:
0 NaN
1 5.0
2 5.0
3 7.0
4 NaN
5 11.0
6 13.0
7 13.0
8 NaN
dtype: float64
In [147]: ser.interpolate(limit_direction="both")
Out[147]:
0 5.0
1 5.0
2 5.0
3 7.0
4 9.0
5 11.0
6 13.0
7 13.0
8 13.0
dtype: float64
預設情況下,NaN
值會填入,無論它們是由現有的有效值包圍,還是位於現有有效值之外。limit_area
參數將填入限制在值內部或外部。
# fill one consecutive inside value in both directions
In [148]: ser.interpolate(limit_direction="both", limit_area="inside", limit=1)
Out[148]:
0 NaN
1 NaN
2 5.0
3 7.0
4 NaN
5 11.0
6 13.0
7 NaN
8 NaN
dtype: float64
# fill all consecutive outside values backward
In [149]: ser.interpolate(limit_direction="backward", limit_area="outside")
Out[149]:
0 5.0
1 5.0
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 NaN
8 NaN
dtype: float64
# fill all consecutive outside values in both directions
In [150]: ser.interpolate(limit_direction="both", limit_area="outside")
Out[150]:
0 5.0
1 5.0
2 5.0
3 NaN
4 NaN
5 NaN
6 13.0
7 13.0
8 13.0
dtype: float64
替換值#
Series.replace()
和 DataFrame.replace()
可類似於 Series.fillna()
和 DataFrame.fillna()
來替換或插入遺失值。
In [151]: df = pd.DataFrame(np.eye(3))
In [152]: df
Out[152]:
0 1 2
0 1.0 0.0 0.0
1 0.0 1.0 0.0
2 0.0 0.0 1.0
In [153]: df_missing = df.replace(0, np.nan)
In [154]: df_missing
Out[154]:
0 1 2
0 1.0 NaN NaN
1 NaN 1.0 NaN
2 NaN NaN 1.0
In [155]: df_filled = df_missing.replace(np.nan, 2)
In [156]: df_filled
Out[156]:
0 1 2
0 1.0 2.0 2.0
1 2.0 1.0 2.0
2 2.0 2.0 1.0
傳遞清單可替換多個值。
In [157]: df_filled.replace([1, 44], [2, 28])
Out[157]:
0 1 2
0 2.0 2.0 2.0
1 2.0 2.0 2.0
2 2.0 2.0 2.0
使用對應字典替換。
In [158]: df_filled.replace({1: 44, 2: 28})
Out[158]:
0 1 2
0 44.0 28.0 28.0
1 28.0 44.0 28.0
2 28.0 28.0 44.0
正規表示式替換#
注意
以 r
字元為字首的 Python 字串,例如 r'hello world'
是 “原始” 字串。它們對於反斜線的語意與沒有此字首的字串不同。原始字串中的反斜線會被解釋為跳脫反斜線,例如 r'\' == '\\'
。
將 ‘.’ 替換為 NaN
In [159]: d = {"a": list(range(4)), "b": list("ab.."), "c": ["a", "b", np.nan, "d"]}
In [160]: df = pd.DataFrame(d)
In [161]: df.replace(".", np.nan)
Out[161]:
a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d
將 ‘.’ 替換為 NaN
,並使用正規表示式移除周圍空白
In [162]: df.replace(r"\s*\.\s*", np.nan, regex=True)
Out[162]:
a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d
使用正規表示式清單替換。
In [163]: df.replace([r"\.", r"(a)"], ["dot", r"\1stuff"], regex=True)
Out[163]:
a b c
0 0 astuff astuff
1 1 b b
2 2 dot NaN
3 3 dot d
使用對應字典中的正規表示式替換。
In [164]: df.replace({"b": r"\s*\.\s*"}, {"b": np.nan}, regex=True)
Out[164]:
a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d
傳遞使用 regex
關鍵字的正規表達式巢狀字典。
In [165]: df.replace({"b": {"b": r""}}, regex=True)
Out[165]:
a b c
0 0 a a
1 1 b
2 2 . NaN
3 3 . d
In [166]: df.replace(regex={"b": {r"\s*\.\s*": np.nan}})
Out[166]:
a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d
In [167]: df.replace({"b": r"\s*(\.)\s*"}, {"b": r"\1ty"}, regex=True)
Out[167]:
a b c
0 0 a a
1 1 b b
2 2 .ty NaN
3 3 .ty d
傳遞正規表達式清單,它會以純量取代符合的項目。
In [168]: df.replace([r"\s*\.\s*", r"a|b"], "placeholder", regex=True)
Out[168]:
a b c
0 0 placeholder placeholder
1 1 placeholder placeholder
2 2 placeholder NaN
3 3 placeholder d
所有正規表達式範例也可以傳遞 to_replace
參數,作為 regex
參數。在此情況下,value
參數必須明確傳遞名稱,或 regex
必須是巢狀字典。
In [169]: df.replace(regex=[r"\s*\.\s*", r"a|b"], value="placeholder")
Out[169]:
a b c
0 0 placeholder placeholder
1 1 placeholder placeholder
2 2 placeholder NaN
3 3 placeholder d
注意
來自 re.compile
的正規表達式物件也是有效的輸入。