合併、聯結、串接和比較#

pandas 提供各種方法來組合和比較 SeriesDataFrame

concat()#

concat() 函數會沿著軸串接任意數量的 SeriesDataFrame 物件,同時對其他軸上的索引執行選用設定邏輯(聯集或交集)。像 numpy.concatenate 一樣,concat() 會取得均質類型物件的清單或字典,並將它們串接起來。

In [1]: df1 = pd.DataFrame(
   ...:     {
   ...:         "A": ["A0", "A1", "A2", "A3"],
   ...:         "B": ["B0", "B1", "B2", "B3"],
   ...:         "C": ["C0", "C1", "C2", "C3"],
   ...:         "D": ["D0", "D1", "D2", "D3"],
   ...:     },
   ...:     index=[0, 1, 2, 3],
   ...: )
   ...: 

In [2]: df2 = pd.DataFrame(
   ...:     {
   ...:         "A": ["A4", "A5", "A6", "A7"],
   ...:         "B": ["B4", "B5", "B6", "B7"],
   ...:         "C": ["C4", "C5", "C6", "C7"],
   ...:         "D": ["D4", "D5", "D6", "D7"],
   ...:     },
   ...:     index=[4, 5, 6, 7],
   ...: )
   ...: 

In [3]: df3 = pd.DataFrame(
   ...:     {
   ...:         "A": ["A8", "A9", "A10", "A11"],
   ...:         "B": ["B8", "B9", "B10", "B11"],
   ...:         "C": ["C8", "C9", "C10", "C11"],
   ...:         "D": ["D8", "D9", "D10", "D11"],
   ...:     },
   ...:     index=[8, 9, 10, 11],
   ...: )
   ...: 

In [4]: frames = [df1, df2, df3]

In [5]: result = pd.concat(frames)

In [6]: result
Out[6]: 
      A    B    C    D
0    A0   B0   C0   D0
1    A1   B1   C1   D1
2    A2   B2   C2   D2
3    A3   B3   C3   D3
4    A4   B4   C4   D4
5    A5   B5   C5   D5
6    A6   B6   C6   D6
7    A7   B7   C7   D7
8    A8   B8   C8   D8
9    A9   B9   C9   D9
10  A10  B10  C10  D10
11  A11  B11  C11  D11

../_images/merging_concat_basic.png

注意

concat() 會建立資料的完整副本,而反覆使用 concat() 可能會建立不必要的副本。在使用 concat() 之前,請先將所有 DataFrameSeries 物件收集到清單中。

frames = [process_your_file(f) for f in files]
result = pd.concat(frames)

注意

當串接具有命名軸的 DataFrame 時,pandas 會盡可能嘗試保留這些索引/欄位名稱。如果所有輸入共用一個共通名稱,此名稱會指派給結果。如果輸入名稱不同,結果會是未命名。對 MultiIndex 來說也是一樣,但邏輯會逐層個別套用。

結果軸的合併邏輯#

關鍵字 join 指定如何處理第一個 DataFrame 中不存在的軸值。

join='outer' 取所有軸值的聯集

In [7]: df4 = pd.DataFrame(
   ...:     {
   ...:         "B": ["B2", "B3", "B6", "B7"],
   ...:         "D": ["D2", "D3", "D6", "D7"],
   ...:         "F": ["F2", "F3", "F6", "F7"],
   ...:     },
   ...:     index=[2, 3, 6, 7],
   ...: )
   ...: 

In [8]: result = pd.concat([df1, df4], axis=1)

In [9]: result
Out[9]: 
     A    B    C    D    B    D    F
0   A0   B0   C0   D0  NaN  NaN  NaN
1   A1   B1   C1   D1  NaN  NaN  NaN
2   A2   B2   C2   D2   B2   D2   F2
3   A3   B3   C3   D3   B3   D3   F3
6  NaN  NaN  NaN  NaN   B6   D6   F6
7  NaN  NaN  NaN  NaN   B7   D7   F7

../_images/merging_concat_axis1.png

join='inner' 取軸值的交集

In [10]: result = pd.concat([df1, df4], axis=1, join="inner")

In [11]: result
Out[11]: 
    A   B   C   D   B   D   F
2  A2  B2  C2  D2  B2  D2  F2
3  A3  B3  C3  D3  B3  D3  F3

../_images/merging_concat_axis1_inner.png

若要使用原始 DataFrame精確索引執行有效的「左」聯結,結果可以重新索引。

In [12]: result = pd.concat([df1, df4], axis=1).reindex(df1.index)

In [13]: result
Out[13]: 
    A   B   C   D    B    D    F
0  A0  B0  C0  D0  NaN  NaN  NaN
1  A1  B1  C1  D1  NaN  NaN  NaN
2  A2  B2  C2  D2   B2   D2   F2
3  A3  B3  C3  D3   B3   D3   F3

../_images/merging_concat_axis1_join_axes.png

忽略串接軸上的索引#

對於沒有有意義索引的 DataFrame 物件,ignore_index 會忽略重疊的索引。

In [14]: result = pd.concat([df1, df4], ignore_index=True, sort=False)

In [15]: result
Out[15]: 
     A   B    C   D    F
0   A0  B0   C0  D0  NaN
1   A1  B1   C1  D1  NaN
2   A2  B2   C2  D2  NaN
3   A3  B3   C3  D3  NaN
4  NaN  B2  NaN  D2   F2
5  NaN  B3  NaN  D3   F3
6  NaN  B6  NaN  D6   F6
7  NaN  B7  NaN  D7   F7

../_images/merging_concat_ignore_index.png

串接 SeriesDataFrame #

您可以串接 SeriesDataFrame 物件的組合。 Series 會轉換成 DataFrame,其中欄位名稱為 Series 的名稱。

In [16]: s1 = pd.Series(["X0", "X1", "X2", "X3"], name="X")

In [17]: result = pd.concat([df1, s1], axis=1)

In [18]: result
Out[18]: 
    A   B   C   D   X
0  A0  B0  C0  D0  X0
1  A1  B1  C1  D1  X1
2  A2  B2  C2  D2  X2
3  A3  B3  C3  D3  X3

../_images/merging_concat_mixed_ndim.png

未命名的 Series 會連續編號。

In [19]: s2 = pd.Series(["_0", "_1", "_2", "_3"])

In [20]: result = pd.concat([df1, s2, s2, s2], axis=1)

In [21]: result
Out[21]: 
    A   B   C   D   0   1   2
0  A0  B0  C0  D0  _0  _0  _0
1  A1  B1  C1  D1  _1  _1  _1
2  A2  B2  C2  D2  _2  _2  _2
3  A3  B3  C3  D3  _3  _3  _3

../_images/merging_concat_unnamed_series.png

ignore_index=True 會捨棄所有名稱參照。

In [22]: result = pd.concat([df1, s1], axis=1, ignore_index=True)

In [23]: result
Out[23]: 
    0   1   2   3   4
0  A0  B0  C0  D0  X0
1  A1  B1  C1  D1  X1
2  A2  B2  C2  D2  X2
3  A3  B3  C3  D3  X3

../_images/merging_concat_series_ignore_index.png

產生的 keys#

keys 參數會在產生的索引或欄位中新增另一個軸向層級(建立 MultiIndex),將特定金鑰與每個原始 DataFrame 關聯起來。

In [24]: result = pd.concat(frames, keys=["x", "y", "z"])

In [25]: result
Out[25]: 
        A    B    C    D
x 0    A0   B0   C0   D0
  1    A1   B1   C1   D1
  2    A2   B2   C2   D2
  3    A3   B3   C3   D3
y 4    A4   B4   C4   D4
  5    A5   B5   C5   D5
  6    A6   B6   C6   D6
  7    A7   B7   C7   D7
z 8    A8   B8   C8   D8
  9    A9   B9   C9   D9
  10  A10  B10  C10  D10
  11  A11  B11  C11  D11

In [26]: result.loc["y"]
Out[26]: 
    A   B   C   D
4  A4  B4  C4  D4
5  A5  B5  C5  D5
6  A6  B6  C6  D6
7  A7  B7  C7  D7

../_images/merging_concat_keys.png

當建立一個新的 DataFrame 基於現有的 Series 時,keys 參數可以覆寫欄位名稱。

In [27]: s3 = pd.Series([0, 1, 2, 3], name="foo")

In [28]: s4 = pd.Series([0, 1, 2, 3])

In [29]: s5 = pd.Series([0, 1, 4, 5])

In [30]: pd.concat([s3, s4, s5], axis=1)
Out[30]: 
   foo  0  1
0    0  0  0
1    1  1  1
2    2  2  4
3    3  3  5

In [31]: pd.concat([s3, s4, s5], axis=1, keys=["red", "blue", "yellow"])
Out[31]: 
   red  blue  yellow
0    0     0       0
1    1     1       1
2    2     2       4
3    3     3       5

您也可以傳遞一個字典給 concat(),這種情況下,字典的鍵值將會用於 keys 參數,除非有其他 keys 參數被指定。

In [32]: pieces = {"x": df1, "y": df2, "z": df3}

In [33]: result = pd.concat(pieces)

In [34]: result
Out[34]: 
        A    B    C    D
x 0    A0   B0   C0   D0
  1    A1   B1   C1   D1
  2    A2   B2   C2   D2
  3    A3   B3   C3   D3
y 4    A4   B4   C4   D4
  5    A5   B5   C5   D5
  6    A6   B6   C6   D6
  7    A7   B7   C7   D7
z 8    A8   B8   C8   D8
  9    A9   B9   C9   D9
  10  A10  B10  C10  D10
  11  A11  B11  C11  D11

../_images/merging_concat_dict.png
In [35]: result = pd.concat(pieces, keys=["z", "y"])

In [36]: result
Out[36]: 
        A    B    C    D
z 8    A8   B8   C8   D8
  9    A9   B9   C9   D9
  10  A10  B10  C10  D10
  11  A11  B11  C11  D11
y 4    A4   B4   C4   D4
  5    A5   B5   C5   D5
  6    A6   B6   C6   D6
  7    A7   B7   C7   D7

../_images/merging_concat_dict_keys.png

所建立的 MultiIndex 有層級,這些層級是由傳遞的鍵值和 DataFrame 片段的索引所建立的。

In [37]: result.index.levels
Out[37]: FrozenList([['z', 'y'], [4, 5, 6, 7, 8, 9, 10, 11]])

levels 參數允許指定與 keys 相關的結果層級。

In [38]: result = pd.concat(
   ....:     pieces, keys=["x", "y", "z"], levels=[["z", "y", "x", "w"]], names=["group_key"]
   ....: )
   ....: 

In [39]: result
Out[39]: 
                A    B    C    D
group_key                       
x         0    A0   B0   C0   D0
          1    A1   B1   C1   D1
          2    A2   B2   C2   D2
          3    A3   B3   C3   D3
y         4    A4   B4   C4   D4
          5    A5   B5   C5   D5
          6    A6   B6   C6   D6
          7    A7   B7   C7   D7
z         8    A8   B8   C8   D8
          9    A9   B9   C9   D9
          10  A10  B10  C10  D10
          11  A11  B11  C11  D11

../_images/merging_concat_dict_keys_names.png
In [40]: result.index.levels
Out[40]: FrozenList([['z', 'y', 'x', 'w'], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])

附加列到 DataFrame#

如果您有一個 Series,您想要將其作為單一列附加到 DataFrame,您可以將該列轉換為 DataFrame 並使用 concat()

In [41]: s2 = pd.Series(["X0", "X1", "X2", "X3"], index=["A", "B", "C", "D"])

In [42]: result = pd.concat([df1, s2.to_frame().T], ignore_index=True)

In [43]: result
Out[43]: 
    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
4  X0  X1  X2  X3

../_images/merging_append_series_as_row.png

merge()#

merge() 執行類似於 SQL 等關聯式資料庫的聯結操作。熟悉 SQL 但不熟悉 pandas 的使用者可以參考 與 SQL 的比較

合併類型#

merge() 實作常見的 SQL 風格聯結操作。

  • 一對一:在索引上聯結兩個 DataFrame 物件,這些索引必須包含唯一值。

  • 多對一:將唯一索引聯結到另一個 DataFrame 中的一或多個欄位。

  • 多對多:將欄位與欄位結合。

注意

在將欄位與欄位結合時,可能會產生多對多結合,已傳遞 DataFrame 物件上的任何索引都會被捨棄

對於多對多結合,如果在兩個表格中某個金鑰組合出現超過一次,DataFrame 將會產生關聯資料的笛卡兒積

In [44]: left = pd.DataFrame(
   ....:     {
   ....:         "key": ["K0", "K1", "K2", "K3"],
   ....:         "A": ["A0", "A1", "A2", "A3"],
   ....:         "B": ["B0", "B1", "B2", "B3"],
   ....:     }
   ....: )
   ....: 

In [45]: right = pd.DataFrame(
   ....:     {
   ....:         "key": ["K0", "K1", "K2", "K3"],
   ....:         "C": ["C0", "C1", "C2", "C3"],
   ....:         "D": ["D0", "D1", "D2", "D3"],
   ....:     }
   ....: )
   ....: 

In [46]: result = pd.merge(left, right, on="key")

In [47]: result
Out[47]: 
  key   A   B   C   D
0  K0  A0  B0  C0  D0
1  K1  A1  B1  C1  D1
2  K2  A2  B2  C2  D2
3  K3  A3  B3  C3  D3

../_images/merging_merge_on_key.png

傳遞給 merge()how 參數會指定結果表格中包含哪些金鑰。如果金鑰組合未出現在左邊或右邊的表格中,合併表格中的值將會是 NA。以下是 how 選項及其等效 SQL 名稱的摘要

合併方法

SQL Join 名稱

說明

left

LEFT OUTER JOIN

僅使用左邊框架的金鑰

right

RIGHT OUTER JOIN

僅使用右邊框架的金鑰

outer

FULL OUTER JOIN

使用兩個框架中金鑰的聯集

inner

INNER JOIN

使用兩個框架中金鑰的交集

cross

CROSS JOIN

建立兩個框架中列的笛卡兒積

In [48]: left = pd.DataFrame(
   ....:    {
   ....:       "key1": ["K0", "K0", "K1", "K2"],
   ....:       "key2": ["K0", "K1", "K0", "K1"],
   ....:       "A": ["A0", "A1", "A2", "A3"],
   ....:       "B": ["B0", "B1", "B2", "B3"],
   ....:    }
   ....: )
   ....: 

In [49]: right = pd.DataFrame(
   ....:    {
   ....:       "key1": ["K0", "K1", "K1", "K2"],
   ....:       "key2": ["K0", "K0", "K0", "K0"],
   ....:       "C": ["C0", "C1", "C2", "C3"],
   ....:       "D": ["D0", "D1", "D2", "D3"],
   ....:    }
   ....: )
   ....: 

In [50]: result = pd.merge(left, right, how="left", on=["key1", "key2"])

In [51]: result
Out[51]: 
  key1 key2   A   B    C    D
0   K0   K0  A0  B0   C0   D0
1   K0   K1  A1  B1  NaN  NaN
2   K1   K0  A2  B2   C1   D1
3   K1   K0  A2  B2   C2   D2
4   K2   K1  A3  B3  NaN  NaN

../_images/merging_merge_on_key_left.png
In [52]: result = pd.merge(left, right, how="right", on=["key1", "key2"])

In [53]: result
Out[53]: 
  key1 key2    A    B   C   D
0   K0   K0   A0   B0  C0  D0
1   K1   K0   A2   B2  C1  D1
2   K1   K0   A2   B2  C2  D2
3   K2   K0  NaN  NaN  C3  D3

../_images/merging_merge_on_key_right.png
In [54]: result = pd.merge(left, right, how="outer", on=["key1", "key2"])

In [55]: result
Out[55]: 
  key1 key2    A    B    C    D
0   K0   K0   A0   B0   C0   D0
1   K0   K1   A1   B1  NaN  NaN
2   K1   K0   A2   B2   C1   D1
3   K1   K0   A2   B2   C2   D2
4   K2   K0  NaN  NaN   C3   D3
5   K2   K1   A3   B3  NaN  NaN

../_images/merging_merge_on_key_outer.png
In [56]: result = pd.merge(left, right, how="inner", on=["key1", "key2"])

In [57]: result
Out[57]: 
  key1 key2   A   B   C   D
0   K0   K0  A0  B0  C0  D0
1   K1   K0  A2  B2  C1  D1
2   K1   K0  A2  B2  C2  D2

../_images/merging_merge_on_key_inner.png
In [58]: result = pd.merge(left, right, how="cross")

In [59]: result
Out[59]: 
   key1_x key2_x   A   B key1_y key2_y   C   D
0      K0     K0  A0  B0     K0     K0  C0  D0
1      K0     K0  A0  B0     K1     K0  C1  D1
2      K0     K0  A0  B0     K1     K0  C2  D2
3      K0     K0  A0  B0     K2     K0  C3  D3
4      K0     K1  A1  B1     K0     K0  C0  D0
..    ...    ...  ..  ..    ...    ...  ..  ..
11     K1     K0  A2  B2     K2     K0  C3  D3
12     K2     K1  A3  B3     K0     K0  C0  D0
13     K2     K1  A3  B3     K1     K0  C1  D1
14     K2     K1  A3  B3     K1     K0  C2  D2
15     K2     K1  A3  B3     K2     K0  C3  D3

[16 rows x 8 columns]

../_images/merging_merge_cross.png

如果 SeriesDataFrame 的名稱與 MultiIndex 的欄位相符,則可以使用 MultiIndex。在合併之前,使用 Series.reset_index()Series 轉換為 DataFrame

In [60]: df = pd.DataFrame({"Let": ["A", "B", "C"], "Num": [1, 2, 3]})

In [61]: df
Out[61]: 
  Let  Num
0   A    1
1   B    2
2   C    3

In [62]: ser = pd.Series(
   ....:     ["a", "b", "c", "d", "e", "f"],
   ....:     index=pd.MultiIndex.from_arrays(
   ....:         [["A", "B", "C"] * 2, [1, 2, 3, 4, 5, 6]], names=["Let", "Num"]
   ....:     ),
   ....: )
   ....: 

In [63]: ser
Out[63]: 
Let  Num
A    1      a
B    2      b
C    3      c
A    4      d
B    5      e
C    6      f
dtype: object

In [64]: pd.merge(df, ser.reset_index(), on=["Let", "Num"])
Out[64]: 
  Let  Num  0
0   A    1  a
1   B    2  b
2   C    3  c

DataFrame 中使用重複的合併鍵執行外部合併

In [65]: left = pd.DataFrame({"A": [1, 2], "B": [2, 2]})

In [66]: right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})

In [67]: result = pd.merge(left, right, on="B", how="outer")

In [68]: result
Out[68]: 
   A_x  B  A_y
0    1  2    4
1    1  2    5
2    1  2    6
3    2  2    4
4    2  2    5
5    2  2    6

../_images/merging_merge_on_key_dup.png

警告

在重複的鍵上合併會大幅增加結果的維度,並可能導致記憶體溢位。

合併鍵的唯一性#

validate 參數會檢查合併鍵的唯一性。在合併作業之前會檢查鍵的唯一性,並可以防止記憶體溢位和意外的鍵重複。

In [69]: left = pd.DataFrame({"A": [1, 2], "B": [1, 2]})

In [70]: right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]})

In [71]: result = pd.merge(left, right, on="B", how="outer", validate="one_to_one")
---------------------------------------------------------------------------
MergeError                                Traceback (most recent call last)
Cell In[71], line 1
----> 1 result = pd.merge(left, right, on="B", how="outer", validate="one_to_one")

File ~/work/pandas/pandas/pandas/core/reshape/merge.py:170, in merge(left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate)
    155     return _cross_merge(
    156         left_df,
    157         right_df,
   (...)
    167         copy=copy,
    168     )
    169 else:
--> 170     op = _MergeOperation(
    171         left_df,
    172         right_df,
    173         how=how,
    174         on=on,
    175         left_on=left_on,
    176         right_on=right_on,
    177         left_index=left_index,
    178         right_index=right_index,
    179         sort=sort,
    180         suffixes=suffixes,
    181         indicator=indicator,
    182         validate=validate,
    183     )
    184     return op.get_result(copy=copy)

File ~/work/pandas/pandas/pandas/core/reshape/merge.py:813, in _MergeOperation.__init__(self, left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, indicator, validate)
    809 # If argument passed to validate,
    810 # check if columns specified as unique
    811 # are in fact unique.
    812 if validate is not None:
--> 813     self._validate_validate_kwd(validate)

File ~/work/pandas/pandas/pandas/core/reshape/merge.py:1657, in _MergeOperation._validate_validate_kwd(self, validate)
   1653         raise MergeError(
   1654             "Merge keys are not unique in left dataset; not a one-to-one merge"
   1655         )
   1656     if not right_unique:
-> 1657         raise MergeError(
   1658             "Merge keys are not unique in right dataset; not a one-to-one merge"
   1659         )
   1661 elif validate in ["one_to_many", "1:m"]:
   1662     if not left_unique:

MergeError: Merge keys are not unique in right dataset; not a one-to-one merge

如果使用者知道右邊的 DataFrame 有重複的資料,但想要確保左邊的 DataFrame 沒有重複的資料,可以使用 validate='one_to_many' 參數,這樣就不會引發例外。

In [72]: pd.merge(left, right, on="B", how="outer", validate="one_to_many")
Out[72]: 
   A_x  B  A_y
0    1  1  NaN
1    2  2  4.0
2    2  2  5.0
3    2  2  6.0

合併結果指標#

merge() 接受 indicator 參數。如果為 True,會在輸出物件中新增一個稱為 _merge 的類別型欄位,其值如下:

觀察來源

_merge

合併鍵只在 'left' 框架中

left_only

合併鍵只在 'right' 框架中

right_only

合併鍵在兩個框架中

both

In [73]: df1 = pd.DataFrame({"col1": [0, 1], "col_left": ["a", "b"]})

In [74]: df2 = pd.DataFrame({"col1": [1, 2, 2], "col_right": [2, 2, 2]})

In [75]: pd.merge(df1, df2, on="col1", how="outer", indicator=True)
Out[75]: 
   col1 col_left  col_right      _merge
0     0        a        NaN   left_only
1     1        b        2.0        both
2     2      NaN        2.0  right_only
3     2      NaN        2.0  right_only

傳遞字串參數給 indicator 會將該值用作指標欄位的名稱。

In [76]: pd.merge(df1, df2, on="col1", how="outer", indicator="indicator_column")
Out[76]: 
   col1 col_left  col_right indicator_column
0     0        a        NaN        left_only
1     1        b        2.0             both
2     2      NaN        2.0       right_only
3     2      NaN        2.0       right_only

重疊的值欄位#

合併 suffixes 參數會取得一個字串清單的元組,以附加到輸入 DataFrame 中重疊的欄位名稱,以區分結果欄位

In [77]: left = pd.DataFrame({"k": ["K0", "K1", "K2"], "v": [1, 2, 3]})

In [78]: right = pd.DataFrame({"k": ["K0", "K0", "K3"], "v": [4, 5, 6]})

In [79]: result = pd.merge(left, right, on="k")

In [80]: result
Out[80]: 
    k  v_x  v_y
0  K0    1    4
1  K0    1    5

../_images/merging_merge_overlapped.png
In [81]: result = pd.merge(left, right, on="k", suffixes=("_l", "_r"))

In [82]: result
Out[82]: 
    k  v_l  v_r
0  K0    1    4
1  K0    1    5

../_images/merging_merge_overlapped_suffix.png

DataFrame.join()#

DataFrame.join() 結合多個可能索引不同的 DataFrame 欄位,成為單一結果 DataFrame

In [83]: left = pd.DataFrame(
   ....:     {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=["K0", "K1", "K2"]
   ....: )
   ....: 

In [84]: right = pd.DataFrame(
   ....:     {"C": ["C0", "C2", "C3"], "D": ["D0", "D2", "D3"]}, index=["K0", "K2", "K3"]
   ....: )
   ....: 

In [85]: result = left.join(right)

In [86]: result
Out[86]: 
     A   B    C    D
K0  A0  B0   C0   D0
K1  A1  B1  NaN  NaN
K2  A2  B2   C2   D2

../_images/merging_join.png
In [87]: result = left.join(right, how="outer")

In [88]: result
Out[88]: 
      A    B    C    D
K0   A0   B0   C0   D0
K1   A1   B1  NaN  NaN
K2   A2   B2   C2   D2
K3  NaN  NaN   C3   D3

../_images/merging_join_outer.png
In [89]: result = left.join(right, how="inner")

In [90]: result
Out[90]: 
     A   B   C   D
K0  A0  B0  C0  D0
K2  A2  B2  C2  D2

../_images/merging_join_inner.png

DataFrame.join() 接受一個選用的 on 參數,它可能是欄位或多個欄位名稱,用於對齊傳遞的 DataFrame

In [91]: left = pd.DataFrame(
   ....:     {
   ....:         "A": ["A0", "A1", "A2", "A3"],
   ....:         "B": ["B0", "B1", "B2", "B3"],
   ....:         "key": ["K0", "K1", "K0", "K1"],
   ....:     }
   ....: )
   ....: 

In [92]: right = pd.DataFrame({"C": ["C0", "C1"], "D": ["D0", "D1"]}, index=["K0", "K1"])

In [93]: result = left.join(right, on="key")

In [94]: result
Out[94]: 
    A   B key   C   D
0  A0  B0  K0  C0  D0
1  A1  B1  K1  C1  D1
2  A2  B2  K0  C0  D0
3  A3  B3  K1  C1  D1

../_images/merging_join_key_columns.png
In [95]: result = pd.merge(
   ....:     left, right, left_on="key", right_index=True, how="left", sort=False
   ....: )
   ....: 

In [96]: result
Out[96]: 
    A   B key   C   D
0  A0  B0  K0  C0  D0
1  A1  B1  K1  C1  D1
2  A2  B2  K0  C0  D0
3  A3  B3  K1  C1  D1

../_images/merging_merge_key_columns.png

若要根據多個鍵進行合併,傳遞的 DataFrame 必須具有 MultiIndex

In [97]: left = pd.DataFrame(
   ....:     {
   ....:         "A": ["A0", "A1", "A2", "A3"],
   ....:         "B": ["B0", "B1", "B2", "B3"],
   ....:         "key1": ["K0", "K0", "K1", "K2"],
   ....:         "key2": ["K0", "K1", "K0", "K1"],
   ....:     }
   ....: )
   ....: 

In [98]: index = pd.MultiIndex.from_tuples(
   ....:     [("K0", "K0"), ("K1", "K0"), ("K2", "K0"), ("K2", "K1")]
   ....: )
   ....: 

In [99]: right = pd.DataFrame(
   ....:     {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=index
   ....: )
   ....: 

In [100]: result = left.join(right, on=["key1", "key2"])

In [101]: result
Out[101]: 
    A   B key1 key2    C    D
0  A0  B0   K0   K0   C0   D0
1  A1  B1   K0   K1  NaN  NaN
2  A2  B2   K1   K0   C1   D1
3  A3  B3   K2   K1   C3   D3

../_images/merging_join_multikeys.png

預設的 DataFrame.join 會執行左聯結,只使用呼叫 DataFrame 中找到的鍵。其他聯結類型可以用 how 指定。

In [102]: result = left.join(right, on=["key1", "key2"], how="inner")

In [103]: result
Out[103]: 
    A   B key1 key2   C   D
0  A0  B0   K0   K0  C0  D0
2  A2  B2   K1   K0  C1  D1
3  A3  B3   K2   K1  C3  D3

../_images/merging_join_multikeys_inner.png

將單一索引聯結到多重索引#

你可以將一個 DataFrameIndex 加入到一個 DataFrame 中,其中包含一個 MultiIndexIndexname 會與 MultiIndex 的層級名稱相符。

In [104]: left = pd.DataFrame(
   .....:     {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]},
   .....:     index=pd.Index(["K0", "K1", "K2"], name="key"),
   .....: )
   .....: 

In [105]: index = pd.MultiIndex.from_tuples(
   .....:     [("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")],
   .....:     names=["key", "Y"],
   .....: )
   .....: 

In [106]: right = pd.DataFrame(
   .....:     {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]},
   .....:     index=index,
   .....: )
   .....: 

In [107]: result = left.join(right, how="inner")

In [108]: result
Out[108]: 
         A   B   C   D
key Y                 
K0  Y0  A0  B0  C0  D0
K1  Y1  A1  B1  C1  D1
K2  Y2  A2  B2  C2  D2
    Y3  A2  B2  C3  D3

../_images/merging_join_multiindex_inner.png

使用兩個 MultiIndex 進行合併#

輸入參數的 MultiIndex 必須完全用於合併,並且是左參數中索引的子集。

In [109]: leftindex = pd.MultiIndex.from_product(
   .....:     [list("abc"), list("xy"), [1, 2]], names=["abc", "xy", "num"]
   .....: )
   .....: 

In [110]: left = pd.DataFrame({"v1": range(12)}, index=leftindex)

In [111]: left
Out[111]: 
            v1
abc xy num    
a   x  1     0
       2     1
    y  1     2
       2     3
b   x  1     4
       2     5
    y  1     6
       2     7
c   x  1     8
       2     9
    y  1    10
       2    11

In [112]: rightindex = pd.MultiIndex.from_product(
   .....:     [list("abc"), list("xy")], names=["abc", "xy"]
   .....: )
   .....: 

In [113]: right = pd.DataFrame({"v2": [100 * i for i in range(1, 7)]}, index=rightindex)

In [114]: right
Out[114]: 
         v2
abc xy     
a   x   100
    y   200
b   x   300
    y   400
c   x   500
    y   600

In [115]: left.join(right, on=["abc", "xy"], how="inner")
Out[115]: 
            v1   v2
abc xy num         
a   x  1     0  100
       2     1  100
    y  1     2  200
       2     3  200
b   x  1     4  300
       2     5  300
    y  1     6  400
       2     7  400
c   x  1     8  500
       2     9  500
    y  1    10  600
       2    11  600
In [116]: leftindex = pd.MultiIndex.from_tuples(
   .....:     [("K0", "X0"), ("K0", "X1"), ("K1", "X2")], names=["key", "X"]
   .....: )
   .....: 

In [117]: left = pd.DataFrame(
   .....:     {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=leftindex
   .....: )
   .....: 

In [118]: rightindex = pd.MultiIndex.from_tuples(
   .....:     [("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")], names=["key", "Y"]
   .....: )
   .....: 

In [119]: right = pd.DataFrame(
   .....:     {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=rightindex
   .....: )
   .....: 

In [120]: result = pd.merge(
   .....:     left.reset_index(), right.reset_index(), on=["key"], how="inner"
   .....: ).set_index(["key", "X", "Y"])
   .....: 

In [121]: result
Out[121]: 
            A   B   C   D
key X  Y                 
K0  X0 Y0  A0  B0  C0  D0
    X1 Y0  A1  B1  C0  D0
K1  X2 Y1  A2  B2  C1  D1

../_images/merging_merge_two_multiindex.png

合併欄位和索引層級的組合#

傳遞為 onleft_onright_on 參數的字串可以參照欄位名稱或索引層級名稱。這允許合併 DataFrame 執行個體,並結合索引層級和欄位,而無需重設索引。

In [122]: left_index = pd.Index(["K0", "K0", "K1", "K2"], name="key1")

In [123]: left = pd.DataFrame(
   .....:     {
   .....:         "A": ["A0", "A1", "A2", "A3"],
   .....:         "B": ["B0", "B1", "B2", "B3"],
   .....:         "key2": ["K0", "K1", "K0", "K1"],
   .....:     },
   .....:     index=left_index,
   .....: )
   .....: 

In [124]: right_index = pd.Index(["K0", "K1", "K2", "K2"], name="key1")

In [125]: right = pd.DataFrame(
   .....:     {
   .....:         "C": ["C0", "C1", "C2", "C3"],
   .....:         "D": ["D0", "D1", "D2", "D3"],
   .....:         "key2": ["K0", "K0", "K0", "K1"],
   .....:     },
   .....:     index=right_index,
   .....: )
   .....: 

In [126]: result = left.merge(right, on=["key1", "key2"])

In [127]: result
Out[127]: 
       A   B key2   C   D
key1                     
K0    A0  B0   K0  C0  D0
K1    A2  B2   K0  C1  D1
K2    A3  B3   K1  C3  D3

../_images/merge_on_index_and_column.png

注意

DataFrame 連接在兩個參數中都符合索引層級的字串上時,索引層級會保留為結果 DataFrame 中的索引層級。

注意

DataFrame 僅使用 MultiIndex 的部分層級來連接時,額外的層級將從結果連接中刪除。若要保留這些層級,請在這些層級名稱上使用 DataFrame.reset_index(),以便在連接之前將這些層級移至欄位。

連接多個 DataFrame#

:class:`DataFrame` 的清單或元組也可以傳遞給 join(),以在索引上將它們連接在一起。

In [128]: right2 = pd.DataFrame({"v": [7, 8, 9]}, index=["K1", "K1", "K2"])

In [129]: result = left.join([right, right2])

../_images/merging_join_multi_df.png

DataFrame.combine_first()#

DataFrame.combine_first() 使用另一個 DataFrame 中的非遺失值更新一個 DataFrame 中的遺失值,位置相對應。

In [130]: df1 = pd.DataFrame(
   .....:     [[np.nan, 3.0, 5.0], [-4.6, np.nan, np.nan], [np.nan, 7.0, np.nan]]
   .....: )
   .....: 

In [131]: df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5.0, 1.6, 4]], index=[1, 2])

In [132]: result = df1.combine_first(df2)

In [133]: result
Out[133]: 
     0    1    2
0  NaN  3.0  5.0
1 -4.6  NaN -8.2
2 -5.0  7.0  4.0

../_images/merging_combine_first.png

merge_ordered()#

merge_ordered() 結合順序資料,例如數字或時間序列資料,並可選擇使用 fill_method 填入遺失的資料。

In [134]: left = pd.DataFrame(
   .....:     {"k": ["K0", "K1", "K1", "K2"], "lv": [1, 2, 3, 4], "s": ["a", "b", "c", "d"]}
   .....: )
   .....: 

In [135]: right = pd.DataFrame({"k": ["K1", "K2", "K4"], "rv": [1, 2, 3]})

In [136]: pd.merge_ordered(left, right, fill_method="ffill", left_by="s")
Out[136]: 
     k   lv  s   rv
0   K0  1.0  a  NaN
1   K1  1.0  a  1.0
2   K2  1.0  a  2.0
3   K4  1.0  a  3.0
4   K1  2.0  b  1.0
5   K2  2.0  b  2.0
6   K4  2.0  b  3.0
7   K1  3.0  c  1.0
8   K2  3.0  c  2.0
9   K4  3.0  c  3.0
10  K1  NaN  d  1.0
11  K2  4.0  d  2.0
12  K4  4.0  d  3.0

merge_asof()#

merge_asof() 類似於排序的左連接,但配對是根據最近的鍵,而不是等於的鍵。對於 left DataFrame 中的每一列,right DataFrame 中的最後一列會在 on 鍵小於左側鍵的情況下選取。兩個 DataFrame 都必須根據鍵排序。

選擇性地,merge_asof() 可以透過配對 by 鍵,除了在 on 鍵上進行最近配對之外,執行群組合併。

In [137]: trades = pd.DataFrame(
   .....:     {
   .....:         "time": pd.to_datetime(
   .....:             [
   .....:                 "20160525 13:30:00.023",
   .....:                 "20160525 13:30:00.038",
   .....:                 "20160525 13:30:00.048",
   .....:                 "20160525 13:30:00.048",
   .....:                 "20160525 13:30:00.048",
   .....:             ]
   .....:         ),
   .....:         "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
   .....:         "price": [51.95, 51.95, 720.77, 720.92, 98.00],
   .....:         "quantity": [75, 155, 100, 100, 100],
   .....:     },
   .....:     columns=["time", "ticker", "price", "quantity"],
   .....: )
   .....: 

In [138]: quotes = pd.DataFrame(
   .....:     {
   .....:         "time": pd.to_datetime(
   .....:             [
   .....:                 "20160525 13:30:00.023",
   .....:                 "20160525 13:30:00.023",
   .....:                 "20160525 13:30:00.030",
   .....:                 "20160525 13:30:00.041",
   .....:                 "20160525 13:30:00.048",
   .....:                 "20160525 13:30:00.049",
   .....:                 "20160525 13:30:00.072",
   .....:                 "20160525 13:30:00.075",
   .....:             ]
   .....:         ),
   .....:         "ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"],
   .....:         "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
   .....:         "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03],
   .....:     },
   .....:     columns=["time", "ticker", "bid", "ask"],
   .....: )
   .....: 

In [139]: trades
Out[139]: 
                     time ticker   price  quantity
0 2016-05-25 13:30:00.023   MSFT   51.95        75
1 2016-05-25 13:30:00.038   MSFT   51.95       155
2 2016-05-25 13:30:00.048   GOOG  720.77       100
3 2016-05-25 13:30:00.048   GOOG  720.92       100
4 2016-05-25 13:30:00.048   AAPL   98.00       100

In [140]: quotes
Out[140]: 
                     time ticker     bid     ask
0 2016-05-25 13:30:00.023   GOOG  720.50  720.93
1 2016-05-25 13:30:00.023   MSFT   51.95   51.96
2 2016-05-25 13:30:00.030   MSFT   51.97   51.98
3 2016-05-25 13:30:00.041   MSFT   51.99   52.00
4 2016-05-25 13:30:00.048   GOOG  720.50  720.93
5 2016-05-25 13:30:00.049   AAPL   97.99   98.01
6 2016-05-25 13:30:00.072   GOOG  720.50  720.88
7 2016-05-25 13:30:00.075   MSFT   52.01   52.03

In [141]: pd.merge_asof(trades, quotes, on="time", by="ticker")
Out[141]: 
                     time ticker   price  quantity     bid     ask
0 2016-05-25 13:30:00.023   MSFT   51.95        75   51.95   51.96
1 2016-05-25 13:30:00.038   MSFT   51.95       155   51.97   51.98
2 2016-05-25 13:30:00.048   GOOG  720.77       100  720.50  720.93
3 2016-05-25 13:30:00.048   GOOG  720.92       100  720.50  720.93
4 2016-05-25 13:30:00.048   AAPL   98.00       100     NaN     NaN

merge_asof() 在報價時間和交易時間之間 2ms 內。

In [142]: pd.merge_asof(trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms"))
Out[142]: 
                     time ticker   price  quantity     bid     ask
0 2016-05-25 13:30:00.023   MSFT   51.95        75   51.95   51.96
1 2016-05-25 13:30:00.038   MSFT   51.95       155     NaN     NaN
2 2016-05-25 13:30:00.048   GOOG  720.77       100  720.50  720.93
3 2016-05-25 13:30:00.048   GOOG  720.92       100  720.50  720.93
4 2016-05-25 13:30:00.048   AAPL   98.00       100     NaN     NaN

merge_asof() 在報價時間與交易時間之間10ms內,並排除時間上完全相符的資料。請注意,雖然我們排除了完全相符的資料(報價),但之前的報價傳播到那個時間點。

In [143]: pd.merge_asof(
   .....:     trades,
   .....:     quotes,
   .....:     on="time",
   .....:     by="ticker",
   .....:     tolerance=pd.Timedelta("10ms"),
   .....:     allow_exact_matches=False,
   .....: )
   .....: 
Out[143]: 
                     time ticker   price  quantity    bid    ask
0 2016-05-25 13:30:00.023   MSFT   51.95        75    NaN    NaN
1 2016-05-25 13:30:00.038   MSFT   51.95       155  51.97  51.98
2 2016-05-25 13:30:00.048   GOOG  720.77       100    NaN    NaN
3 2016-05-25 13:30:00.048   GOOG  720.92       100    NaN    NaN
4 2016-05-25 13:30:00.048   AAPL   98.00       100    NaN    NaN

compare()#

Series.compare()DataFrame.compare() 方法允許您比較兩個 DataFrameSeries,並摘要它們的差異。

In [144]: df = pd.DataFrame(
   .....:     {
   .....:         "col1": ["a", "a", "b", "b", "a"],
   .....:         "col2": [1.0, 2.0, 3.0, np.nan, 5.0],
   .....:         "col3": [1.0, 2.0, 3.0, 4.0, 5.0],
   .....:     },
   .....:     columns=["col1", "col2", "col3"],
   .....: )
   .....: 

In [145]: df
Out[145]: 
  col1  col2  col3
0    a   1.0   1.0
1    a   2.0   2.0
2    b   3.0   3.0
3    b   NaN   4.0
4    a   5.0   5.0

In [146]: df2 = df.copy()

In [147]: df2.loc[0, "col1"] = "c"

In [148]: df2.loc[2, "col3"] = 4.0

In [149]: df2
Out[149]: 
  col1  col2  col3
0    c   1.0   1.0
1    a   2.0   2.0
2    b   3.0   4.0
3    b   NaN   4.0
4    a   5.0   5.0

In [150]: df.compare(df2)
Out[150]: 
  col1       col3      
  self other self other
0    a     c  NaN   NaN
2  NaN   NaN  3.0   4.0

預設情況下,如果兩個對應的值相等,它們將顯示為 NaN。此外,如果整行/整欄中的所有值,則結果中將省略該行/欄。其餘差異將在欄位上對齊。

將差異堆疊在列上。

In [151]: df.compare(df2, align_axis=0)
Out[151]: 
        col1  col3
0 self     a   NaN
  other    c   NaN
2 self   NaN   3.0
  other  NaN   4.0

使用 keep_shape=True 保留所有原始列和行

In [152]: df.compare(df2, keep_shape=True)
Out[152]: 
  col1       col2       col3      
  self other self other self other
0    a     c  NaN   NaN  NaN   NaN
1  NaN   NaN  NaN   NaN  NaN   NaN
2  NaN   NaN  NaN   NaN  3.0   4.0
3  NaN   NaN  NaN   NaN  NaN   NaN
4  NaN   NaN  NaN   NaN  NaN   NaN

即使值相等,也要保留所有原始值。

In [153]: df.compare(df2, keep_shape=True, keep_equal=True)
Out[153]: 
  col1       col2       col3      
  self other self other self other
0    a     c  1.0   1.0  1.0   1.0
1    a     a  2.0   2.0  2.0   2.0
2    b     b  3.0   3.0  3.0   4.0
3    b     b  NaN   NaN  4.0   4.0
4    a     a  5.0   5.0  5.0   5.0